

Daily Tutorial Sheet-5 Level – 1

62.(D)
$$NH_2^{\oplus}$$
 \longrightarrow $\begin{bmatrix} \emptyset \\ H \end{bmatrix}$ NH_3 \longrightarrow $\begin{bmatrix} \bigcap \\ N \\ H \end{bmatrix}$ NH_4^{\oplus} \longrightarrow $\begin{bmatrix} H \\ I \\ H \end{bmatrix}$ H

All are sp^3 hybridised but bond angle in NH_2^- is minimum as $2\ell p$ are present and hence ℓp – bp repulsion is more

- 63.(B) Generally boiling point of hydrides increases down the group but B.P of NH₃ > B.P. of PH₃, because of hydrogen bonding in NH₃. The B.P. of SbH₃ is still higher than NH₃ because of its large size.
 So, increasing order of boiling point is →PH₃ < AsH₃ < NH₃ < SbH₃
- **64.(D)** Higher the electronegativity difference, higher will be the polarity F is most electronegative followed by O and then S.
- **65.(B)** C-C is the longest of all and C-O is longer than C=C. C-H bond is shortest because of small size of H. Double bond is smaller than single bond because of more s character. C-H < C = C < C-O < C-C
- **66.(D)** SF_2 has bent shape

67.(A)
$$Cl > P - Cl$$
 $F \setminus F$

- **68.(C)** In diborane (B_2H_6), one electron pair is shared between three atoms (B H B). Therefore, it is called 3-centre -2 electrons bond (3c 2e) or banana bond.
- **69.(B)** Apply MOT, bond order = 1/2 (Bonding electrons anti bonding electrons).

70.(B) Bond Order =
$$\frac{N_b - N_a}{2}$$

71.(A)
$$N_2(14)$$
: $\sigma 1s^2 \sigma * 1s^2 \sigma 2s^2 \sigma * 2s^2 \pi 2p_x^2 \pi 2p_y^2 \sigma 2p_z^2$

72.(B) OF = Total 17 electrons

$$\therefore \qquad \text{OF : KK}^* (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_x)^2 (\pi 2p_y)^2 (\pi^* 2p_y)^2 (\pi^* 2p_y)^2 (\pi^* 2p_y)^2}$$

73.(D) Check that only NO^+ and N_2 are isoelectronic and rest of the pairs are not. Obviously, both will have same bond order (check yourself from MO theory). B_2 and O_2^{2-} , C_2 and O_2 are not isoelectronic but have same bond order.

74.(B) Paramagnetism is observed due to the presence of unpaired electron(s).

$${\rm O}_2 \colon {\rm KK}^* \, {\rm LL}^* (\sigma 2p_z)^2 \, (\pi 2p_x)^2 \, (\pi 2p_y)^2 (\pi^* 2p_x)^1 (\pi^* 2p_y)^l$$

Two unpaired electrons.

In other cases, we have no unpaired electron(s)

75.(D)
$$N_2 : KK^* (\pi 2p_x)^2 (\pi 2p_y)^2 (\sigma 2p_z)^2$$
; Bond Order = 3

$$N_2^-: KK^*(\pi 2p_x)^2 (\pi 2p_y)^2 (\sigma 2p_z)^2 (\pi^* 2p_x)^1$$
; Bond Order = 2.5

 $\mbox{Bond Order of } N_2^- < \mbox{Bond Order of } N_2 \quad \therefore \ N_2^- \ \mbox{bond is weaker than } N-N \mbox{ bond in } N_2.$

Also, $\,N_2^-$ is paramagnetic (one unpaired e^- in $\,\pi^*2p_{_X}\,$)

$$O_2 \colon \operatorname{KK}^* (\sigma 2p_z)^2 (\pi 2p_x)^2 (\pi 2p_y)^2 \ (\pi^* 2p_x)^l (\pi^* 2p_y)^l$$

B.O. = 2, Paramagnetic

$$O_2^-: KK^* \sigma 2p_z)^2 \ (\pi 2p_x)^2 \ (\pi 2p_y)^2 (\pi^* 2p_x)^2 \ (\pi^* 2py)^l$$

B.O. = 1.5, Paramagnetic

Bond Order in $\mathrm{O}_2^- < \mathrm{Bond}$ Order in O_2 .

Also, Bond length
$$\propto \frac{1}{\text{Bond Order}}$$